1,806 research outputs found

    Three-dimensional in vitro models of prostate cancer

    Get PDF
    Issued as final reportGeorgia Cancer Coalitio

    Enhancement of parametric pumping due to Andreev reflection

    Get PDF
    We report properties of parametric electron pumping in the presence of a superconducting lead. Due to a constructive interference between the direct reflection and the multiple Andreev reflection, the pumped current is greatly enhanced. For both quantum point contacts and double barrier structures at resonance, we obtain exact solutions in the weak pumping regime showing that IpNS=4IpNI_p^{NS} = 4 I_p^N, which should be compared with the result of conductance GNS=2GNG_{NS} = 2G_N. Numerical results are also provided for the strong pumping regime showing interesting Andreev assisted pumping behaviour

    Electron transport through Al-ZnO-Al: an {\it ab initio} calculation

    Get PDF
    The electron transport properties of ZnO nano-wires coupled by two aluminium electrodes were studied by {\it ab initio} method based on non-equilibrium Green's function approach and density functional theory. A clearly rectifying current-voltage characteristics was observed. It was found that the contact interfaces between Al-O and Al-Zn play important roles in the charge transport at low bias voltage and give very asymmetric I-V characteristics. When the bias voltage increases, the negative differential resistance occurs at negative bias voltage. The charge accumulation was calculated and its behavior was found to be well correlated with the I-V characteristics. We have also calculated the electrochemical capacitance which exhibits three plateaus at different bias voltages which may have potential device application.Comment: 10 pages, 6 figure

    Engineering Photon Delocalization in a Rabi Dimer with a Dissipative Bath

    Full text link
    A Rabi dimer is used to model a recently reported circuit quantum electrodynamics system composed of two coupled transmission-line resonators with each coupled to one qubit. In this study, a phonon bath is adopted to mimic the multimode micromechanical resonators and is coupled to the qubits in the Rabi dimer. The dynamical behavior of the composite system is studied by the Dirac-Frenkel time-dependent variational principle combined with the multiple Davydov D2_{2} ans\"{a}tze. Initially all the photons are pumped into the left resonator, and the two qubits are in the down state coupled with the phonon vacuum. In the strong qubit-photon coupling regime, the photon dynamics can be engineered by tuning the qubit-bath coupling strength α\alpha and photon delocalization is achieved by increasing α\alpha. In the absence of dissipation, photons are localized in the initial resonator. Nevertheless, with moderate qubit-bath coupling, photons are delocalized with quasiequilibration of the photon population in two resonators at long times. In this case, high frequency bath modes are activated by interacting with depolarized qubits. For strong dissipation, photon delocalization is achieved via frequent photon-hopping within two resonators and the qubits are suppressed in their initial down state.Comment: 11 pages, 11 figure

    On representing signals using only timing information

    Get PDF
    It is well known that only a special class of bandpass signals, called real-zero (RZ) signals can be uniquely represented (up to a scale factor) by their zero crossings, i.e., the time instants at which the signals change their sign. However, it is possible to invertibly map arbitrary bandpass signals into RZ signals, thereby, implicitly represent the bandpass signal using the mapped RZ signal’s zero crossings. This mapping is known as real-zero conversion (RZC). In this paper a class of novel signal-adaptive RZC algorithms is proposed. Specifically, algorithms that are analogs of well-known adaptive filtering methods to convert an arbitrary bandpass signal into other signals, whose zero crossings contain sufficient information to represent the bandpass signal’s phase and envelope are presented. Since the proposed zero crossings are not those of the original signal, but only indirectly related to it, they are called hidden or covert zero crossings (CoZeCs). The CoZeCs-based representations are developed first for analytic signals, and then extended to real-valued signals. Finally, the proposed algorithms are used to represent synthetic signals and speech signals processed through an analysis filter bank, and it is shown that they can be reconstructed given the CoZeCs. This signal representation has potential in many speech applications

    Universal quantized spin-Hall conductance fluctuation in graphene

    Full text link
    We report a theoretical investigation of quantized spin-Hall conductance fluctuation of graphene devices in the diffusive regime. Two graphene models that exhibit quantized spin-Hall effect (QSHE) are analyzed. Model-I is with unitary symmetry under an external magnetic field B0B\ne 0 but with zero spin-orbit interaction, tSO=0t_{SO}=0. Model-II is with symplectic symmetry where B=0 but tSO0t_{SO} \ne 0. Extensive numerical calculations indicate that the two models have exactly the same universal QSHE conductance fluctuation value 0.285e/4π0.285 e/4\pi regardless of the symmetry. Qualitatively different from the conventional charge and spin universal conductance distributions, in the presence of edge states the spin-Hall conductance shows an one-sided log-normal distribution rather than a Gaussian distribution. Our results strongly suggest that the quantized spin-Hall conductance fluctuation belongs to a new universality class

    Wide & deep learning for spatial & intensity adaptive image restoration

    Full text link
    Most existing deep learning-based image restoration methods usually aim to remove degradation with uniform spatial distribution and constant intensity, making insufficient use of degradation prior knowledge. Here we bootstrap the deep neural networks to suppress complex image degradation whose intensity is spatially variable, through utilizing prior knowledge from degraded images. Specifically, we propose an ingenious and efficient multi-frame image restoration network (DparNet) with wide & deep architecture, which integrates degraded images and prior knowledge of degradation to reconstruct images with ideal clarity and stability. The degradation prior is directly learned from degraded images in form of key degradation parameter matrix, with no requirement of any off-site knowledge. The wide & deep architecture in DparNet enables the learned parameters to directly modulate the final restoring results, boosting spatial & intensity adaptive image restoration. We demonstrate the proposed method on two representative image restoration applications: image denoising and suppression of atmospheric turbulence effects in images. Two large datasets, containing 109,536 and 49,744 images respectively, were constructed to support our experiments. The experimental results show that our DparNet significantly outperform SoTA methods in restoration performance and network efficiency. More importantly, by utilizing the learned degradation parameters via wide & deep learning, we can improve the PSNR of image restoration by 0.6~1.1 dB with less than 2% increasing in model parameter numbers and computational complexity. Our work suggests that degraded images may hide key information of the degradation process, which can be utilized to boost spatial & intensity adaptive image restoration

    Shot noise of spin current and spin transfer torque

    Get PDF
    We report the theoretical investigation of noise spectrum of spin current and spin transfer torque for non-colinear spin polarized transport in a spin-valve device which consists of normal scattering region connected by two ferromagnetic electrodes. Our theory was developed using non-equilibrium Green's function method and general non-linear SσVS^\sigma-V and SτVS^\tau-V relations were derived as a function of angle θ\theta between magnetization of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that for the MNM system, the auto-correlation of spin current is enough to characterize the fluctuation of spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of spin current are needed to characterize the noise spectrum of spin current. Furthermore, the spin transfer torque and the torque noise were studied for the MNM system. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ\sin\theta when the system is far away from the resonance. When the system is near the resonance, the spin transfer torque becomes non-sinusoidal function of θ\theta. The derivative of noise spectrum of spin transfer torque with respect to the bias voltage NτN_\tau behaves differently when the system is near or far away from the resonance. Specifically, the differential shot noise of spin transfer torque NτN_\tau is a concave function of θ\theta near the resonance while it becomes convex function of θ\theta far away from resonance. For certain bias voltages, the period Nτ(θ)N_\tau(\theta) becomes π\pi instead of 2π2\pi. For small θ\theta, it was found that the differential shot noise of spin transfer torque is very sensitive to the bias voltage and the other system parameters.Comment: 15pages, 6figure
    corecore